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Abstract

This paper deals with the numerical simulation of heat wave propagation in the medium subjected to different kinds of heat source,
particularly heat impulse. The discontinuous Galerkin finite element method (DGFEM) proposed for the stress wave propagation in
solids [X.K. Li, D.M. Yao, R.W. Lewis, A discontinuous Galerkin finite element method for dynamic and wave propagation problems
in non-linear solids and saturated porous media. Int. J. Numer. Meth. Eng. 57 (2003) 1775–1800] is extended to numerically solve for the
non-Fourier heat transport equation constructed according to the CV model [C. Cattaneo, A form of heat-conduction equation which
eliminates the paradox of instantaneous propagation, Compute Rendus 247 (1958) 431–433; P. Vernotte, Les paradoxes de la theorie
continue de l�equation de la chaleur, Compute Rendus 246 (1958) 3154–3155]. Temperature and its time-derivative are chosen as prim-
itive variables defined at each FE node. The main distinct characteristic of the proposed DGFEM is that the specific P3–P1 interpolation
approximation, which uses piecewise cubic (Hermite�s polynomial) and linear interpolations for both temperature and its time-derivative,
respectively, in the time domain is particularly proposed. As a consequence the continuity of temperature at each discrete time instant is
exactly ensured, whereas discontinuity of the time-derivative of temperature at discrete time levels remains. Numerical results illustrate
good performance of the present method in the numerical simulation of heat wave propagation in eliminating spurious numerical oscil-
lations and in providing more accurate solutions in the time domain.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, the non-Fourier heat-conduction phenome-
non has attracted more attentions in engineering sciences,
especially in the use of heat sources such as lasers and
microwaves. Because of the characteristic of such heat
sources applied with extremely short duration or very high
frequency or quite high heat flux densities, it brings the
inaccuracy of the classical Fourier heat diffusion theory.

The classical parabolic model of heat-conduction based
on the Fourier law of heat propagation provides acceptable
results for most engineering applications. However, it fails
to properly capture the heat wave behavior characterized
with the hyperbolic nature, particularly discontinuities or
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sharp gradients of the solution due to propagating impul-
sive heat waves in the medium subjected to the heat
impulse with heat action time shorter than a pico-, even a
femto-second.

Cattaneo [2] and Vernotto [3] developed their versions
of the CV model independently, in which the relaxation
of heat flux, i.e. the non-Fourier effect, is introduced to
upgrade the classical Fourier heat-conduction equation to
the non-Fourier heat-conduction equation for the model
given below

qþ s0

o

ot
q ¼ �krT ð1Þ

where q is heat flux, T temperature, k the thermal conduc-
tivity and s0 the relaxation time (non-negative constant). If
the relaxation time s0 = 0, the heat flux law of the CV
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Nomenclature

q heat flux
T temperature
t time
I partition of time domain
a thermal diffusivity
N, M Hermite interpolation function
M, C generalized mass matrix
K stiffness matrix
Q heat source vector

T temperature vector
v temporal derivative vector of temperature
w time-jump function

Greek symbols

s0 relaxation time
k thermal conductivity
ki function
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model defined by Eq. (1) reduces to the classical Fourier�s
model for heat conduction. Inserting Eq. (1) into the en-
ergy conservation equation, the hyperbolic heat transport
equation, including source term, takes the form

ar2T ¼ oT
ot
þ s0

o2T
ot2
þ Qðx; tÞ ð2Þ

where a is thermal diffusivity, Q source term.
ffiffiffiffiffiffiffiffiffi
a=s0

p
the

propagation speed of temperature wave.
Various solution schemes for governing equation (2)

with different initial and boundary conditions can be
browsed in literatures. Among them are the finite difference
method and the finite element method. Duhamel [4] pre-
sented a finite integral transform method for heat wave
conduction problems. Casas-Vazquez and Jou [5] proposed
a backward difference method in space that is capable of
modelling ultra-fast laser heating process. There exist many
other different versions of the finite integral method and
finite difference method, such as those given in [6,7].

The finite element method has been widely accepted as
one of most general and effective approaches available for
the numerical solutions of most of engineering problems.
The standard (continuous) Galerkin finite element method
(CGFEM) combined with different types of direct time inte-
gration procedures, such as the Newmark family method,
has been used to numerically analyze non-Fourier heat-
conduction problems. The primary unknown variable, i.e.
temperature, and its temporal derivative are assumed con-
tinuous in the discretization in the time domain. However,
CGFEM generally fails to properly capture discontinuities
or sharp gradients of the solution due to propagating impul-
sive waves in space and is incapable of filtering out the effects
of spurious high modes and controlling spurious numerical
oscillation.

Tamma et al. [8–10] devoted many efforts in getting rid
of the spurious oscillation with success. They developed the
c-family method with the three coefficients, in which a
smooth procedure was introduced to filter out the effects
of spurious high modes. The disadvantage of the method
is that one of the coefficients c3 used in the smooth proce-
dure has to be adjusted case by case to stabilize the solution
procedure and to control the spurious oscillation for the
non-classical problems.
The present work extended the new version of the time
discontinuous Galerkin finite element method (DGFEM)
developed by Li et al. [1] to the heat wave propagation prob-
lem. The essential feature of the proposed DGFEM distinct
from the previous versions of DGFEM is its P3–P1 interpo-
lation approximations, i.e. the primary variable (the dis-
placement vector in the solid mechanics and temperature
in the heat transfer problems) and its temporal derivative
are approximately interpolated by the Hermite (i.e. the
third-order polynomial, P3) and the linear (i.e. the first-
order polynomial, P1) interpolation functions in the time
domain, respectively. In comparison with CGFEM to solve
time dependent problems, the primary unknown variable
i.e. temperature and its temporal derivative in DGFEM
are assumed to be discontinuous at each of discrete time
instants in their discretization in the time domain. The
relaxation of restrictions on continuity of the primary vari-
able and its temporal derivative provides a mechanism to
filter the spurious oscillations without the need of introduc-
tion of any artificial coefficients and then much more accu-
rate solutions than does CGFEM using the Newmark
method as the same time step size is used. Even though,
on the other hand, DGFEM formulations typically lead
to a system of coupled equations with four times larger than
that generated by CGFEM using the Newmark method.
Nevertheless it is indicated that [1] DGFEM is three-order
accurate and may use a larger time step size than CGFEM,
in addition, the explicit algorithm of proposed DGFEM is
used to avoid directly solving the system of coupled simul-
taneous equations. Hence, the total computational cost of
DGFEM may be still comparable with that of CGFEM.
2. The algorithm of the DG method in time domain

With the traditional finite element method, Eq. (2) can
be discretized in spatial domain X and expressed as

M€TðtÞ þ C _TðtÞ þ KTðtÞ ¼ QðtÞ; t 2 I ¼ ð0; T Þ ð3Þ

M ¼
Z

X
N Ts0N dX; C ¼

Z
X

NTN dX

K ¼
Z

X
rNTarN dX; Q ¼

Z
Xf

NTQðtÞdXf
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where M and C can be regarded as the generalized mass
matrices, K is the stiffness matrix, Q is the vector of heat
source, T; _T; €T are the temperature and its first-order and
second-order temporal derivatives, respectively. Xf is the
domain of heat flux. I is the time domain. Let I = (0,T)
be a partition of the time domain, having the form:
0 < t1 < � � � < tn < tn+1 < � � � < tN = T. DGFEM permits
discontinuities of functions at discretized time levels. For
a typical time instant tn, the temporal jump of the function
w(tn) = wn can be expressed as

½½wn�� ¼ wðtþn Þ � wðt�n Þ ð4Þ
where

wðt�n Þ ¼ lim
e!0�

wðtn þ eÞ ð5Þ

Denote In ¼ ðt�n ; t�nþ1Þ a typical incremental time step
with the step size Dt = tn+1 � tn. The primary unknown
vector (the global nodal temperature vector) of the semi-
discretized equation (3) at time t 2 [tn, tn+1] in the current
time step In is interpolated by using the third-order Hermite
(P3) time shape functions as

TðtÞ ¼ Tþn N 1ðtÞ þ T�nþ1N 2ðtÞ þ vþn M1ðtÞ þ v�nþ1M2ðtÞ ð6Þ

where Tþn ;T
�
nþ1; v

þ
n ; v

�
nþ1 stand for the global nodal values of

temperature and its time-derivative at times tþn ; t
�
nþ1, respec-

tively. For clarity Eq. (6) is rewritten with the omission of
the superscripts of the vectors Tn, Tn+1,vn, vn+1 and the time
variable t in the equation as

T ¼ TnN 1 þ Tnþ1N 2 þ vnM1 þ vnþ1M2 ð7Þ
It is assumed for the current time step that the global

nodal values of temperature and its time-derivative, i.e.
T�n ; v

�
n at time t�n have been determined at the end of the

previous time step. The Hermite (P3) interpolation func-
tions used in Eq. (7) are given as

N 1 ¼ N 1ðtÞ ¼ k2
1ðk1 þ 3k2Þ; N 2 ¼ N 2ðtÞ ¼ k2

2ðk2 þ 3k1Þ
M1 ¼ M1ðtÞ ¼ k2

1k2Dt; M2 ¼ M2ðtÞ ¼ �k1k
2
2Dt

ð8Þ
in which k1 ¼ tnþ1�t

Dt , k2 ¼ t�tn
Dt .

The global nodal values vn of the temporal derivative of
temperature at arbitrary time t 2 [tn, tn+1] is interpolated as
an independent variable by linear (P1) time shape functions
as

vðtÞ ¼ vþn k1ðtÞ þ v�nþ1k2ðtÞ ð9Þ
or simply expressed as

v ¼ vnk1 þ vnþ1k2 ð10Þ
As the global nodal values of temperature and its time-

derivative vary independently in the following variational
equation in the time domain t 2 [tn, tn+1], Eq. (3) is re-
expressed as

M _vþ Cvþ KT ¼ Q ð11Þ
with the constraint condition

_T� v ¼ 0 ð12Þ
The weak forms of the semi-discretized equation (11)
and the constraint condition (12), together along with the
discontinuity conditions of T and v on a typical time sub-
domain In can be expressed byZ

In

dvTðM _vþ Cvþ KT�QÞdt þ
Z

In

dTTKð _T� vÞdt

þ dTT
n K½½Tn�� þ dvT

n M½½vn�� ¼ 0 ð13Þ

Substituting Eqs. (8)–(10) into Eq. (13), we obtain the
following matrix equation from independent variations of
dTn, dTn+1, dvn, dvn+1

1
2
K 1

2
K � Dt

4
K � Dt

4
K

� 1
2
K 1

2
K � Dt

4
K � Dt

4
K

Dt
4

K Dt
4

K 1
2
Mþ Dt

3
C 1

2
Mþ Dt

6
C� Dt2

12
K

Dt
4

K Dt
4

K � 1
2
Mþ Dt

6
Cþ Dt2

12
K 1

2
Mþ Dt

3
C

2
6666664

3
7777775

�

Tn

Tnþ1

vn

vnþ1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

KT�n

0

Q1 þMv�n

Q2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð14Þ

where

Q1 ¼
Z

In

k1QðtÞdt; Q2 ¼
Z

In

k2QðtÞdt ð15Þ

QðtÞ ¼ QðtnÞk1 þQðtnþ1Þk2 ¼ Qnk1 þQnþ1k2 ð16Þ

Substitution of expression (16) into expression (15) gives

Q1 ¼
Dt
3

Qn þ
Dt
6

Qnþ1; Q2 ¼
Dt
6

Qn þ
Dt
3

Qnþ1 ð17Þ

Eq. (14) can be further recast into the following form:

K 0 0 0

0 K � Dt
2

K � Dt
2

K

0 0 Mþ Dt
6

C� Dt2

12
K � Dt

6
C� Dt2

12
K

0 0 Dt
2

Cþ Dt2

3
K Mþ Dt

2
Cþ Dt2

6
K

2
666664

3
777775

Tn

Tnþ1

vn

vnþ1

8>>>><
>>>>:

9>>>>=
>>>>;

¼

KT�n

KT�n

Q1 �Q2 þMv�n

Q1 þQ2 þMv�n � DtKT�n

8>>>><
>>>>:

9>>>>=
>>>>;

ð18Þ
This is the basic matrix equation of the time discontinu-

ous Galerkin finite element method (DGFEM). The solu-
tions for nodal temperature vectors Tn, Tn+1 are
uncoupled from those for nodal derivative vectors vn,
vn+1. Eq. (18) can be further written as

Tn ¼ T�n ðthat is Tþn ¼ T�n Þ ð19Þ
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Fig. 2. The impulse heating history for the second example.
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Mþ Dt
6

C� Dt2

12
K � Dt

6
C� Dt2

12
K

Dt
2

Cþ Dt2

3
K Mþ Dt

2
Cþ Dt2

6
K

" #
vn

vnþ1

� �

¼
Q1 �Q2 þMv�n

Q1 þQ2 þMv�n � DtKT�n

� � ð20Þ

Tnþ1 ¼ T�n þ
1

2
Dtðvn þ vnþ1Þ ð21Þ

It is remarked that continuity of the nodal temperature
vector Tn at any time level tn in the time domain I = (0,T)
is automatically ensured in the present DGFEM formula-
tion. It is only the nodal derivative vectors at discretized
time levels that remain discontinuous.

3. Numerical examples for heat wave propagation problems

In this section three numerical examples are employed to
demonstrate the validity of the proposed DGFEM in
modelling heat wave propagation problems in the media
subjected to fast heat impulse.

As the first example we consider a one-dimensional spin-
dly column with length equal to 1 m and subjected to the
following initial-boundary conditions:

For x ¼ 0 : Q ¼ 0:5

For x ¼ 1 : T ¼ 0

For T ðx; 0Þ ¼ 0 and
oT ðx; 0Þ

ox
¼ 0

The relaxation time s0 = 1 s and thermal diffusivity
a = 1 are taken. Two finite element meshes with different
mesh densities of 20 · 1 and 10 · 1 four-noded isoparamet-
ric elements are considered. The time step is chosen as
Dt = 1.0�4 s. Comparisons of the temperature distributions
along the axis of the column at different time levels
t = 0.2, 0.5,1 s obtained by using the two different mesh
densities are illustrated in Fig. 1, which also gives a com-
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Fig. 1. Instantaneous temperature profiles at different time levels for the
two meshes.
parison between the analytical solution [11] and the results
given by the present DGFEM.

T ðx; tÞ ¼
Z t

0

X1
n¼1

1

cn

e�½ t�sð Þ=2s0� sin
npx

2
sin

np
2

sin cn t � sð Þds

ð22Þ
in which

cn ¼
1

2s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2

0

npa
2

� �2

� 1

r

It is observed that the results given by the present
DGFEM agree well with the analytical solution. In addi-
tion, it is shown that the results obtained for the two differ-
ent meshes agree to each other very well, therefore,
illustrate the good convergence of the proposed DGFEM
in the space domain as the finite element mesh is refined.

To demonstrate the performance of the proposed
DGFEM in filtering out the spurious numerical oscillations
as compared with CGFEM, as the second example, we
consider the column with the length equal to 0.2 m sub-
jected to an impulse heat flow flux (see Fig. 2) at the left
end (x = 0) of the column. The essential boundary condi-
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Fig. 3. Instantaneous temperature profiles at different time levels for the
two methods.
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tion T = 0 is enforced at the right end (x = 0.2) of the
column. The silent initial conditions, i.e. T(x, 0) = 0 and
oT ðx;0Þ

ox ¼ 0, are specified over the whole length of the
column.

The column is discretized in a 200 · 1 homogeneous ele-
ment mesh. The relaxation time s0 = 0.0001 s and thermal
diffusivity a = 1 are used. Fig. 3 illustrates the temperature
distributions at the two time levels t = 0.002, 0.01 s for the
example using the proposed DGFEM and the existing
CGFEM with the time step size Dt = 2.0 · 10�4 s.
The results given in Fig. 3 also demonstrate much better
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performance of the proposed DGFEM than that of
CGFEM in filtering out the spurious numerical oscillation.

To test the performance of the present DGFEM in mod-
elling 2-D heat wave propagation problems, a 2-D problem
with the domain 0 6 x 6 1 m, 0 6 y 6 0.5 m discretized
into a homogeneous 20 · 10 four-node isoparametric ele-
ment mesh (Dx = Dy = 0.05) shown in Fig. 4 is considered.
The initial temperature over the domain is set to zero. An
impulse heat action Q = 1 lasting 0.05 s is applied to the
middle part AB between y = 0.2–0.3 m of the left bound-
ary. The other boundaries are assumed as adiabatic. The
relaxation time s0 = 0.05 s is taken. The time step is chosen
as Dt = 1.0 · 10�4 s. The three-dimensional temperature
maps at different time levels are illustrated in Fig. 5.

It is observed from Fig. 5a that the temperature level at
the zone near the boundary AB, where the heat source is
applied, at time t = 0.05 s. is higher than that of the zone
of the domain far from the boundary AB. Fig. 5b–f demon-
strates the heat wave propagation process within the
domain at a series of discrete time levels t = 0.1, 0.15,
0.25,0.4,0.54 s. The convection–diffusion character of the
heat wave propagation in the two directions along the x
and the y axes can be clearly observed.

4. Conclusion

The present DGFEM characterized by the semi-discrete
procedure in spatial domain combined with discontinuous
Galerkin interpolation approximation in time domain can
effectively capture discontinuities or sharp gradients of
the solution for the heat wave problems subjected to heat
impulse. The main distinct characteristic of the proposed
DGFEM formulations is that the specific P3–P1 interpola-
tion approximations, which uses piecewise cubic and linear
interpolations for both temperature and its derivative in
the time domain, respectively. Consequently, continuity
of the temperature at each discrete time instant is automat-
ically ensured, whereas discontinuity of the derivative of
temperature at the discrete time levels still remains.

Comparison with traditional time-stepping algorithms,
such as Newmark family algorithm or thec-family algorithm,
the present DGFEM can filter out the effects of the spurious
high modes and then the spurious numerical oscillation suc-
cessfully, in addition, allows large time step sizes to be used
due to its three-order accuracy in the time domain [12].
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